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ABSTRACT 

This report develops improvements to a new project scheduling procedure. 

Statistical PERT, being developed at the Institute of Statistics, Texas A&M 

University.  The project scheduling algorithm is a five step iterative 

procedure capable of determining a minimum cost project schedule when 

the activities making up the project have durations which are random 

variables.  The cost of an activity is assumed to be a convex piecewise 

linear function of the activity's mean duration.  The problem is to 

determine the activity mean durations which both minimize the total 

project cost and insure that the mean (or some specified percentile) 

of the corresponding project completion time distribution is less than 

or equal to a specified project deadline.  The entire distribution of 

the project's completion time under the minimum cost schedule is a 

valuable by-product. 

A critical step. Subnetwork Analysis, in the proposed procedure 

is improved and extended.  Subnetwork Analysis determines an estimate    ;' 

of the duration distribution, F(t), for each subnetwork identified in 

the previous steps.  This estimate is extended to include an extra- 

polation of upper and lower bounds on F(t).  This report also develops a 

new sampling procedure which results in improved estimators for the 

bounds on F(t). 
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1.  A STATISTICAL APPROACH TO PROJECT SCHEDULING 

1.1 Introduction 

The many technological advances of the last century have 

resulted in a drastic increase in the magnitude and complexity of 

man's enterprises.  This, in turn, has brought about an acute need 

for detailed and effective project planning.  Thus, in recent years, 

a search for a general technique which can be employed to simplify 

the task of cost-effective project scheduling has been undertaken. 

A host of promising strategies have been proposed, and a few have 

even enjoyed widespread use.  However, the methods currently in use 

have possibly serious shortcomings (see, for example, Sielken and 

Hartley (1977)).  Therefore, under the sponsorship of the Office of 

Naval Research, the Institute of Statistics has undertaken the develop- 

ment, implementation, and evaluation of a new project scheduling system 

that yields reliable results and can be economically applied to very 

large scheduling problems.  This report is a part of that 

undertaking. 

1.2 The Project Scheduling Problem 

Project scheduling problems arise in a wide variety of contexts. 

Consequently, a number of varying formulations of the problem are 

currently in use.  Since these formulations are not all exactly equiva- 

lent, this subsection gives the specific formulation considered in 

this work. 



A project is, in general, made up of a series of "tasks" or 

"activities" which consume time.  These activities are represented 

graphically by directed arcs.  The origin point and terminal point 

of an arc are both called "nodes".  The graphical representation of a 

project, showing the precedence relationships among the various activi- 

ties, is called a "network"; the first node in a network is usually 

referred to as the "source" while the last node is usually called the 

"sink".  In addition, the following basic rules are adhered to: 

1) Before a particular activity may begin, every other activity 

whose terminal node is that activity's origin node must be 

completed. 

2) Arcs imply logical precedence only; the length of the arc 

has no significance. 

3) The network cannot contain any loops or cycles. 

For example, a small project might consist of activities A, B, C, D, 

and E with the following precedence relationships: 

i) A must be completed before either C or D can be started; 

ii) B must be completed before D can be started; and 

iii) C and D must both be completed before E can be started. 

The corresponding network representation is shown in Figure 1.  The 

arc labeled F does not correspond to any "real" activity but is a 

"dummy" activity merely representing the precedence relation that A 

must be completed before D can be started.  The circles numbered 

1, 2, ..., 5 represent the activities' origin and terminal nodes. 



Figure 1 

A small project represented as a directed network. 

The time required to complete an activity is a random variable. 

The cost of an activity is a convex piecewise linear function of the 

activity's mean duration.  Thus, a "project schedule" is a specifica- 

tion of each activity's mean duration.  The "total project cost" is 

simply the sum of the corresponding activity costs.  The time to com- 

plete the entire project is a random variable whose distribution 

depends upon the activity duration distributions.  The objective is 

to determine a minimum cost project schedule such that the mean (or 

some percentile) of the corresponding project completion time distribu- 

tion is less than or equal to a specified project deadline. 



1.3  Outline of the New Approach to 

Project Scheduling 

In 1974 the development' of a new approach to project scheduling 

was begun with the support of the Office of Naval Research.  The new 

project scheduling procedure that has resulted is an iterative 

algorithm involving the following five general steps: 

Step 1.  Deterministic Scheduling:  Find a minimum cost 

project schedule which completes the project by 

TARGET TIME when each activity's duration is 

exactly its mean duration and hence deterministic 

instead of random.  (The initial value of TARGET 

TIME is usually the specified project deadline.) 

Step 2.  Simplification:  Let each activity's duration be 

a random variable with distribution corresponding 

to that activity's mean duration chosen during 

Deterministic Scheduling.  Replace various config- 

urations of activities by single activities.  The 

duration distribution for a replacement activity 

is the distribution of the time to complete all of 

the activities in the configuration it is replacing. 

The result of this step is a simplified project net- 

work with fewer activities. 

Step 3.  Decomposition:  Partition the simplified project 

network into several subnetworks in such a way that 

the resultant subnetworks can be linked together in 



either series or parallel to form the simplified 

project network. 

Step 4.  Subnetwork Analysis:  Analyze separately each of the 

subnetworks determined during Decomposition.  Within 

a subnetwork each activity's duration distribution 

is approximated by a two-point discrete distribution 

with matching mean, variance, and third moment. 

Determine the subnetwork duration distribution 

corresponding to these discrete activity duration 

distributions. 

Step 5.  Synthesis:  Combine the approximate subnetwork duration 

distributions to obtain an approximate completion time 

distribution for the entire project.  If the mean 

(or some specified percentile), T, of this project 

completion time distribution is sufficiently close 

to the specified project deadline, the "optimal" project 

schedule has been found.  Otherwise, reset TARGET TIME to 

New TARGET TIME = Old TARGET TIME*(Projact Deadline/T) 

and return to Step 1. 

A general discussion and relatively nonmathematical overview of this 

project scheduling procedure is contained in Baker and Sielken (1978)(see also 

Sielken and Hartley (1977)).  The detailed documentation of the development 

thus far of each step is as follows: 

Step 1.  Dunn and Sielken (1977); 

Step 2.  Hartley and Wortham (1966) and Ringer (1969); 

Step 3.  Sielken and Fisher (1976); 



Step 4.  Sielken, Ringer, Hartley, and Arseven (1974) and Sielken, 

Hartley, and Spoeri (1976); 

Step 5.  Sielken, Ringer, Hartley, and Arseven (1974) and Sielken, 

Hartley, and Spoeri (1976). 

1.4 An Integrated System of Computer Programs 

Prior to this research, separate computer programs had been 

written to perform each of the five steps.  (These programs are fully 

documented in the references cited for each step.)  However, from a 

user's viewpoint, this arrangement was awkward because the programs 

had to be executed one at a time and the output from each step had to 

be manually modified for use by the next program in the sequence. 

Thus, one of the objectives of this research has been to fashion the 

individual programs into an integrated package that is more practicable 

from a user's viewpoint. 

The ability to schedule large projects with as many as 1000 

activities in the project network and as many as 500 activities in any 

simplified subnetwork was one of the desired characteristics of the 

computer implementation.  This objective prohibited the combination 

of the five original programs into a single large program since doing 

so would drastically limit the size of the project that could be 

analyzed because of the computer core storage restrictions.  Thus, the 

computer implementation of the new project scheduling procedure has 

been in the form of several individual programs internally linked 



together.  The resulting integrated system of computer programs 

requires that the user supply the project description and algorithm 

parameters only to the main (first) program.  From then on each 

program automatically prepares the proper input for the remaining 

programs in the iterative procedure and stores this information on 

either disk or tape from which it is retrieved as needed.  The job 

control language automatically calls the individual programs as it 

cycles through the five step iterative algorithm. 

Since the new project scheduling procedure is an iterative 

procedure, it may repeat Steps 1-5.  However, as pointed out in 

Sielken and Hartley (1977), after the initial performance of Steps 

1-3 their subsequent performance is greatly simplified.  Thus, special 

simplified versions of the programs for these steps are called when 

these steps are repeated.  Needless to say, the preparation of these 

simplified versions has greatly improved the efficiency of the computer 

implementation. 

The new project scheduling software package that has resulted is 

fully documented in the User's Guide found in Baker and Sielken (1978). 

Included in Baker and Sielken (1978) is an example with a complete 

listing of the system's input and output. 

1.5  The Determination of the Subnetwork 

Duration Distribution 

Two new theoretical contributions to the project scheduling 

procedure are documented in this rfeport.  Both are improvements 

to the statistical methodologies used in determining the subnetwork 



duration distributions.  Section 2 of this report contains a 

detailed description of the procedure (including the improvements) 

used to determine the subnetwork duration distributions.  Sections 3 

and 4 present detailed documentations of the improvements. 

From a statistical viewpoint a subnetwork's duration is defined 

easily enough as the maximum of the paths through the subnetwork. 

In Figure 1 (p. 3), for example, there are really three paths; 

namely, 

P1 = A + C + E 

P=A + F + D + E 

'  P3 = B + D + E . (1.1) 

The project duration is simply the maximum of P , P  and P„.  However, 

the difficulty is that the paths are usually dependent since the paths 

often have activities in common.  For example, the paths P.. and P- 

have activities A and E in common.  Section 5 contains a review of the 

few known general results concerning the distribution of the maximum 

of dependent random variables.  Also in Section 5 is an indication of 

how these general results could be used to modify the Subnetwork 

Analysis procedure described in Section 2. 



2.  ANALYSIS OF A SUBNETWORK 

2.1  Introduction 

The objective of Subnetwork Analysis is to determine each 

subnetwork's duration distribution. 

At the end of Step 2 each activity in the subnetwork has a 

specified duration distribution.  This distribution is now approximated 

by a two-point discrete distribution.  In particular, an activity, say 

A, is now conceptualized as having two possible duration times, say fc 

for a lower duration and u  for an upper duration.  The probability 

that the activity duration is £ is assumed to be P , and correspond- 

ingly the probability that the activity duration is u is assumed to 

be QA = 1 - PA. The values of Si.,   u  ,   and P. are chosen so that the mean, 

variance, and third moment of the discrete distribution are the same 

as the mean, variance, and third moment of activity A's specified 

duration distribution. 

Let n be the number of activities in the subnetwork.  Let 

v = 1, 2, ..., 2  index the 2  possible configurations of activity 

durations when each activity is either at its upper duration or at its 

lower duration.  Let 

p = probability of the v-th activity 

duration configuration 

=  n [P.(l - 6  .) + Q.6  .] (2.1) 
i=1  i     v,i   

vi v,iJ 

where 
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(5
V j^ = 1  if the duration for the i-th activity is u 

in the v-th activity duration configuration 

= 0 if the duration for the i-th activity is i 

in the v-th activity duration configuration.       (2.2) 

Then the subnetwork duration distribution when each activity has its 

two-point discrete distribution is 

2n 

F(t) =  E PvIt(tv) (2.3) 
v=l 

where 

t = the subnetwork duration when the activity durations 

are in the v-th configuration (2.4) 

and 

W '1  if S, 11 ' 
=0 if tv > t . (2.5) 

The discrete distribution function F is an approximation to the sub- 

network's exact duration distribution. 

The goal of Subnetwork Analysis is to determine F. 

Since the number, n, of activities in the subnetwork may be fairly 

large, the complete enumeration of the 2° discrete subnetwork durations 

may sometimes be impractical.  When this happens, the discrete sub- 

network duration distribution F must be approximated.  The approximation 

of F will be based on the activities which are mostly likely to influ- 

ence the subnetwork duration.  The identification of these important 

activities and their interrelationships is discussed in the next sub- 

section which is a review of the procedures originating in Sielken, 
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Ringer, Hartley, and Arseven (1974) and Sielken, Hartley, and Spoeri 

(1976). 

Each subnetwork is assumed to be an acyclic network with one 

source, one sink, and no cut vertices. 

2.2 Formation of Clusters 

The mean duration for activity A is 

mA " VA 
+ VA ' (2-6> 

and the standard deviation of activity A's duration Is 

S
A= [vi +vi-ml]% • (2-7) 

When each activity duration takes on a fixed (nonrandom) value, 

the subnetwork's duration is the duration of the longest path through 

the subnetwork where the "length" of an activity is its duration. 

For example, consider the subnetwork described in Table 1 and displayed 

in Figure 2.  When each activity duration is its mean duration, then 

the subnetwork's duration is 32, corresponding to the path consisting 

of activities 2, 7, and 9. 

Definition 1:  A critical activity is an activity on the longest 

path when all the subnetwork's activity durations are set to their 

means. 

Thus in the example the critical activities are 2, 7, and 9. 

The search for the activities which are most likely to influence 

the subnetwork duration begins with the critical activities.  Each 

critical activity initiates a separate set of activities called a 
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TABLE 1 

Activity Durations for the Subnetwork in Figure 2 

Activity 
^A UA PA mA SA 

1 0.00 2.00 .5 1 1 
2 8.00 10.50 .2 10 1 
3 9.55 15.67 .6 12 3 
4 1.50 4.00 .8 2 1 
5 3.35 5.52 .7 4 1 
6 4.00 6.00 .5 5 1 
7 8.73 16.90 .6 12 4 
8 12.00 14.50 .2 14 1 
9 5.00 15.00 .5 10 5 

(2;10) 

(3;12) 

(8;14) 

Figure 2 

Subnetwork with activities labeled (activity number; mean duration). 
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"cluster".  Initially there are several clusters.  In the example the 

initial clusters are 

C1  = {2} , C2 = {7} , and C3 = {9} . (2.8) 

Some of the non-critical activities may influence the subnetwork's 

duration when not all of the activity durations are at their mean 

values. 

Definition 2:  An associate of a critical activity A is a non- 

critical activity which is on the longest path when all activity 

durations are set to their mean except for the critical activity A 

which has its duration reduced from m. to max(m. - AsA. 0) where A 
A        A    A 

is a nonnegative parameter. 

Thus the associates of a critical activity A are those activities 

whose effect on the subnetwork's duration are related to activity A's 

duration.  In the example, for X  = 1  the associates of the critical 

activities 2, 7, and 9 can be determined by considering Figures 3,4, and 

5 respectively.  In Figure 3 the longest path is still the critical path 

2, 7, and 9, so that activity 2 has no associates.  In Figure 4 the 

longest path is 2, 5, 6, and 9, so that activities 5 and 6 are the 

associates of activity 7.  In Figure 5, the longest path is 2, 5, and 

8, so that activities 5 and 8 are associates of activity 9. 

The associates of each critical activity are determined and added 

to the cluster containing that critical activity.  Thus, in the 

example the clusters are expanded to 

C1 = {2} , C2 = {7, 5, 6} , and C3 = {9, 5, 8} .     (2.9) 
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(3;12) 

(8;14) 

(9;10) 

Figure 3 

Subnetwork for determining the associates of Activity 2 when A = 1. 

Figure 4 

Subnetwork for determining the associates of Activity 7 when X = 1. 
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(3;12) 

(7;12) 

Figure 5 

Subnetwork for determining the associates of Activity 9 when X = 1. 

(8;14) 

Figure 6 

Subnetwork for determining the eliminants of Activity 3 when 6=2, 
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The idea underlying the clusters is that they should be sets of 

activities whose effects on the subnetwork's duration are interrelated. 

Thus, if two clusters contain any activities in common, the activities 

in these two clusters all have an interrelated effect on the subnet- 

work's duration, so the two clusters are combined into one cluster. 

In the example clusters C- and C- both contain activity 5, so they 

are combined.  The resulting clusters are 

C1 = {2} and C2 = {5, 6, 7, 8, 9} . (2.10) 

A non-critical activity may also influence the subnetwork's 

duration if its duration exceeds its mean. 

Definition 3:  An eliminant of a non-critical activity A is a 

critical activity which is not on the longest path when all activity 

durations are set to their means except for activity A which has its 

duration increased from m to m + 0s where 8 is a nonnegative 

parameter. 

For instance, if 6 = 2, the eliminants of the non-critical activity 3 

in the example can be determined from Figure 6.  There the longest 

path is 1, 3, 6, and 9, so that the eliminants of activity 3 are the 

critical activities 2 and 7.  In the example, when 6=2, none of the 

other non-critical activities (1, 4, 5, 6, and 8) have any eliminants. 

For a specified value of 6 the eliminants of every non-critical 

activity are determined.  If a non-critical activity A has eliminants, 

then the effect of A's eliminants on the subnetwork duration is related 

to A's duration, so A is added to every cluster containing at least one 
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of its eliminants.  Thus in the example the clusters become 

C1 = {2, 3} and C2 - {3, 5, 6, 7, 8, 9} .       (2.11) 

After the clusters have been expanded on the basis of eliminants, 

any two clusters containing common elements are combined.  Therefore 

in the example, C.. and C- are combined to form a single cluster 

C1 - {2, 3, 5, 6, 7, 8, 9} . (2.12) 

In general, after the determination of associates and eliminants 

for specified values of X  and 9 and the subsequent combining of 

clusters, there may still be more than one cluster and some of the non- 

critical activities may not be in any cluster.  Usually the larger 

the values of X  and 9 the greater the number of activities in the 

clusters and the smaller the number of clusters.  The clusters that 

remain represent sets of activities such that the effects on the sub- 

network's duration of the activity durations for the activities within 

a set are all interrelated.  Activities in different clusters have 

roughly independent effects on the subnetwork's duration.  Activities 

not in any cluster have essentially no effect on the subnetwork's 

duration. 

The consideration of critical activities, associates, eliminants, 

and the formation of clusters of related activities is obviously only 

one way of identifying the activities which have an important effect 

on the subnetwork's duration and their interrelationships.  However, 

this particular procedure does have the following desirable properties: 
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Property 1:  If X_ > X., then any activity which would be an associate 

of a critical activity A when X = X would also be an 

associate of A when X = X„. 

Property 2:  If 0„ > 9.. , then any critical activity which would be an 

eliminant of a non-critical activity A when 9=6 would 

also be an eliminant of A when 9 = 9„. 

Property 3:  For any fixed value of X, the set of activities in the 

union of the clusters is monotically nondecreasing as 

Property 4:  The number of clusters is nonincreasing as 9 -> °°. 

Property 5:  If s  > 0 for a non-critical activity A, then there 

exists 9. < "o such that A will have some eliminants for 
A 

any 9 _> 9 . 

Property 6:  If s > 0 for every non-critical activity A and 

9* = max{9.; A non-critical} , 
A 

then for 9^9* all activities will be in one cluster. 

Most of these properties are fairly straightforward; however, 

Property 6 requires some special justification.  This justification 

is based on the following definition and theorem which is proven in 

Sielken, Ringer, Hartley, and Arseven (1974). 

Definition 4:  In any acyclic network a bridge over any two 

consecutive arcs A1 and A„ is any arc A_ such that all paths from the 

source to the sink passing through A„ do not pass through either A- 

or A„. 
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Theorem 1;  In any acyclic network with no cut vertices there is 

at least one bridge for any pair of consecutive arcs. 

Property 5 implies that all activities will belong to some cluster if 

9^9*.  Now consider any two consecutive activities A., and A„ on the 

critical path.  Theorem 1 implies that there is a bridge over A and 

A„, say A-.  Since the critical path passes through A., and A„, A~ 

cannot be on the critical path.  Therefore, if 9 _> 9* 21 9. » A., and A„ 

will be eliminants of A. and hence will be in the same cluster as A„. 

Thus, since each cluster contains at least one original critical 

activity and any two consecutive critical path activities belong to 

the same cluster when 9^9*, there is only one cluster when 9 _> 9* 

and Property 6 is established. 

2.3 Bounding the Discrete Subnetwork Duration Distribution F 

2.3.1    Upper Bounds  on F 

Suppose that the cluster formation procedure described in sub- 

section 2.2 has been carried out on a subnetwork for some specified 

values of 9 and X and yielded K clusters.  For each cluster C so 

determined, let nc be the number of activities in the cluster and 

nc nc 
let v = 1, ..., 2  index the 2  configurations of activity durations 

corresponding to 

(a) the duration for each activity A not in C being equal to 

its lower point £., and 

(b) the durations for the activities in C being at each of the 

nc 
2  possible combinations of their upper and lower points. 

Then define 
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2 

F (C; t) = E PvIt(tv) (2.13) 
v=l 

where pv, tv, and lt(ty)   are defined In (2.1), (2.4), and (2.5) 

respectively.  The distribution function F+(C; t) Is an upper bound 

on F.  This can be shown by considering the following: 

Theorem 2:  For any cluster C, any t, and any activity A not 

In C, 

F+(CU {A}; t) < F+(C; t) . 

(For the proof of this theorem, see Slelken, Hartley, and Spoerl 

(1975).)   A straightforward application of Theorem 2 yields 

Theorem 3:  For any two clusters C and C and any t, 

F+(C1 U C2; t) < mln{F+(C1; t), F+(C2; t)} . 

If C* represents the set (cluster) of all activities In the subnetwork, 

then 

F(t) = F+(C*; t) . (2.14) 

Since C Is a subset of C*, either Theorem 2 or Theorem 3 Implies 

F+(C; t) > F(t) (2.15) 

for any cluster C. 

Theorems 2 and 3 can also be used to define some tighter upper 

bounds on the subnetwork's duration distribution than F (C; t). 

Historically, two different Improved bounds have been employed, and 

both have been Incorporated into the current subnetwork analysis 



21 

procedure.  They are 

K 
F^(t; 9, X) = F+( U C; t) (2.16) 

1=1 

and 

F^(t; 9, X) = mln F+(C ; t) . (2.17) 
l<i<K 

Let F+(t; 9, X) denote either F^(t; 9, X) or F^t; 9, X).  Then, 

since Property 2 of the cluster formation procedure implies that as 6 

increases the clusters expand or are combined, Theorems 2 and 3 imply 

that F (t; 9, X) is a nonincreasing function of 9 for every t and any 

X.  Property 6 and (2.14) imply that for 9 •> 9* 

F+(t; 9, X) = F(t) (2.18) 

for every t and any X.  Also (2.14) along with the definitions (2.16) 

and (2.17) imply 

F+(t; 9, X) > F(t) (2.19) 

for all t, 9, and X.  These results are summarized in Theorem 4. 

Theorem 4:  (a) F (t; 9, X) is a nonincreasing function of 9 

for every t and any X; 

(b) there exists a finite value 9* such that 9 21 9* 

implies F (t; 9, X) = F(t) for every t and X; 

and 

(c) for any 9, X, and t 

F+(t; 9, X) > F(t) . 
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2.3.2  Lower Bounds on F 

Let nc denote the number of activities in cluster C, and let 
n n 
c c 

v = 1, ..., 2 ' index the 2  configuration of activity durations 

corresponding to 

(a) the duration for each activity A not in the cluster being 

equal to its upper point u , and 

(b) the durations for activities in the cluster being at each 
n 
c 

of the 2  possible combinations of the upper and lower 

points. 

Then define n 
2 c 

F (C; t) = E Pv
I
t(tv) (2.20) 

v=l 

where p^, t^, and ^(t ) are as previously defined.  Also define 

K 
F (t; 6, X) = F ( U C ; t) (2.21) 

i=l 
and 

F"(t; 9, X) = max F~(C ; t) . (2.22) 
l<i<K   X 

Using an argument completely analagous to that used to prove 

Theorem 4, Sielken, Hartley, and Spoeri (1975) also proved 

Theorem 5:  (a) F (t; 6, A) is a nondecreasing function of 9 

for any fixed value of X; 

(b) there exists a finite value 6* such that 9 >_ 9* 

implies 

F"(t; 9, X)  = F(t) 

for every t and any X; and 
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(c) for any 9, A, and t 

F"(t; 6, X)   <  F(t) . 

(Again, F (t; 6, X) is a generic term used to denote either F (t; 6, A) 

or F~(t; 8, X).)     Thus, F~(t; 9, X)   is a valid lower bound on F. 

2.3.3  The Tightness of the Bounds on F 

That the F -bounds are tighter than the F.-bounds can be seen as 

follows.  The evaluation of F0(t; 9, X) involves the determination of 
1 K 

F~(C.; t) for each i whereas F7(t; 9, X)   =  F_( U C, t) .  Let L. be i -p >  >  /     , , i'  '       i 
i=l 

the length of the longest path when 

1) the activities in C. are at a particular configuration of their 

upper and lower durations and 

2) all activities not in C. have their upper durations. 

Let L,, be the length of the longest path when 

1) the configuration of upper and lower durations for the activi- 

ties in C. is the same as in the determination of L., 
1        K :L 

2) the activities in U C. - C. are at any combination of their 

J=l J    1 
upper and lower durations, and 

K 

3) all activities not in U C. have their upper durations. 

j-l 2 

Then L. ^_ Li. since every activity duration in the determination of L 

is greater than or equal to its corresponding duration in the determina- 

tion of L,,.  Since L. il Lii for any configuration of upper and lower 

durations for the activities in C , 

K 
F ( U C4; t) ^ F (c,; t) (2.23) 

and 

j-i >     -     l 
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_ K 
F~(t; 6, A) = F ( U C ; t) > max F (C.; t) = F (t; 6, X) .   (2.24) 

j-1 ^     1<±<K 1 

A similar argument can be used to show 

+ + K 

F (t; 0, X) = F ( U C ; t) < min F (C ; t) = F^(t; 6, X)   .   (2.25) 
j-1 J     l<i<K   1 

The extent of the differences between the two upper bounds and two 

lower bounds depends heavily on the structure of the particular sub- 

network being analyzed and is a topic that should be considered in 

future empirical studies. 

2.4 Using Sampling to Estimate the Upper and 

Lower Bounds on F 

The only instance in which upper and lower bounds on F are 

computed rather than F itself is when it is computationally imprac- 

tical to determine the longest path for each of the 2ri activity 

duration configurations. 

For given 9 and X,   the evaluation of F (t; 9, X) only requires 
nU 

the determination of the longest path for each of 2  activity con- 

figurations where n,. is the number of activities in the union of the 
K 

clusters C = U C.; i.e., 
j-1 J K 

ny = En.. (2.26) 
j-1 :1 

nU 
The evaluation of F^t; 9, X) also entails only 2  longest path 

determinations.  Likewise, the evaluation of F (t; 9, X) or F~(t; 9, X) 

only requires the determination of the longest path for each of 

K n 
n - E 2 ^^ (2.27) 
S  1-1 

nU 
activity configurations.  Since 2  is always greater than or equal to 
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n , F (t; 6, X) and F„(t; 6, X) are the most economical bounds to 

compute in terms of the number of longest path determinations required. 

However, for any given 9 and A, F.. (t; 6, X) and F.. (t; 0, X) are tighter 

bounds than F_(t; 6, X) and F„(t; 9, X), respectively.  Thus, in making 

the choice of which one of the two sets of bounds to compute, there is 

a trade-off between the accuracy of the bounds and the effort required 

to compute them. 

Since the cluster formation procedure is such that the clusters 

expand or are pooled as 9 increases, it may happen that for particular 
nU     n' 

9 and X, 2  and 2  for some i are both quite large even though 9 is 

only moderately large.  In this case it again becomes impractical to 

examine all the required activity configurations involved in determin- 

ing either the F..-bounds or the F„-bounds.  Consequently, if for the 
nU     n' 

specified values of 9 and X, 2  (or 2  for some i, as the case may 

be) is excessively large. Subnetwork Analysis will compute estimates of 

the corresponding upper and lower bounds based on only a sample of the 

total number of possible configurations.  The actual estimators used 

in this situation are described and developed in Section 3. 

2.5  Estimating F by Extrapolating Between 

the Upper and Lower Bounds on F 

Theorems 4 and 5 of subsection 2.3 imply that if Sj.-i ^_ 6. and 

X..., > X, for all i = 1, ..., I then i+1 — i 

F+(t; 91, X1) > F+(t; 92, X2) > ... > F+(t; 9r Xj) > F(t) > 

F"(t; Q1,   XI) > F"(t; 9I_1, X^) > ... > F"(t; 91, X^     (2.28) 
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for all t.  Thus, if F (t; 9, A) and F (t; 0, A) have been calculated 

for I pairs (6.., A^ i = 1, ..., I (9^ > Q±,   X±+1  > \ ), then F(t) 

may be estimated by extrapolating between F (t; 9 , A ) and 

F (t; 9^,   A^).  As currently written, Subnetwork Analysis calculates 

upper and lower bounds on the subnetwork's approximate duration 

distribution for a sequence of three (6, A) pairs, (6, A) = (1, 1), 

(2, 2), (3, 2).  An extrapolation procedure is then used to obtain an 

estimate of F.  The procedure that has been developed for this purpose 

is documented in Section 4 of this report. 

2.6 A Summary of the Subnetwork Analysis Procedure 

The following is a step-by-step description of the subnetwork 

analysis procedure in summary form.  Recall that the objective of 

Subnetwork Analysis is to determine an "approximation", say F, to 

the subnetwork's duration distribution. 

(a) If n = 1, let F be the actual activity duration distribution 

for the one activity comprising the subnetwork, and stop. 

Otherwise, go to Step b. 

(b) Identify the two-point discrete distribution (£.. uA, P., Q ) 
A  A  A ^A 

for every activity A in the subnetwork. 

(c) Ascertain the user's choice of 

(1) NMAX, the maximum value of m for which all 2m activity 

duration configurations are to be explicitly considered, 

(2) the (0, A) pairs to be considered if not the standard 

pairs (1, 1), (2, 2), and (3, 2), 
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(3) whether the bounds on F are to be (F , F ) or (F , F ) 

if n > NMAX, and 

(4) SAMSIZ, the sample size to be taken if, in the determina- 

tion of bounds on F for some (6, X)  pair, the number of 

activity configurations in the cluster being considered 

0NMAX. exceeds 2 

(d) If the number of activities in the subnetwork doesn't exceed 

NMAX, compute the subnetwork's discrete duration distribution, 

F, explicitly, let F = F, and stop.  Otherwise, go to Step e. 

(e) Do Steps f - i for every (9, A) pair.  Then go to Step j. 

(f) Form the clusters corresponding to (6, X).  If the bounds are 

to be (F , F ), go to Step g.  If the bounds are to be 

(F~, F2), go to Step h. 

(g) Form the union of the clusters and determine n,,.     If 

nil <^ NMAX, evaluate the bounds (F.. , F..) on the basis of all 

nn 
2 u activity duration configurations.  If n.. > NMAX, take a 

nU 
sample of size SAMSIZ from the 2  activity duration config- 

urations and form both F and F.. on the basis of this single 

sample.  Go to Step e. 

(h) Do the following for each cluster, C..  Let n. denote the 

number of activities in the cluster.  If n, < NMAX, evaluate 
i — 

F (C; t) and F (C ; t) on the basis of all 2 ^  activity 

duration configurations.  If n  > NMAX, take a sample of size 
n. 

SAMSIZ from the 2  activity duration configurations and form 

both F~(C.; t) and F (C; t) on the basis of this single 

sample. 
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(i) Form F2 and F2 from the F (C.; t)'s and F+(C.; t)'s 

respectively.  Go to Step e. 

(j) Form F by extrapolating the (F~, F ) bounds determined for 

the  (6, A) pairs.  Stop. 

This process is repeated for every subnetwork in the simplified 

project network. 
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3.  SAMPLE-BASED ESTIMATORS FOR A DISCRETE 

DISTRIBUTION FUNCTION 

3.1  Introduction 

In the subnetwork analysis procedure the calculation of F (C; t) 

or F (C; t), say F(C; t), for a cluster C comprised of n activities 
n n 
c c requires 2  longest path determinations.  If 2  Is too large from a 

practical standpoint, F(C; t) must be approximated on the basis of a 
nc sample of the possible 2  activity duration configurations. 

The estimation of F(C: t) involves two aspects 

1) the identification of an acceptable method of sample selec- 

tion, and 

2) the determination of the form of the estimator. 

Because of the practical difficulties (computer storage requirements, 

etc.) involved in implementing other sampling schemes, only simple 

random sampling (with replacement) and systematic sampling were con- 

sidered in this research.  Of these two, systematic sampling is the 

preferred technique.  The reasons for this preference are presented 

in subsection 3.4. 

Now F(C; t) is the distribution function of a discrete random 

variable X (the length of the subnetwork's longest path) which has a 

known number, 
n 

M = 2 C (3.1) 

of possible values which are not necessarily distinct.  Since the 

probability that a particular activity, A, attains its lower duration 

is known to be P. and the probability that it attains its upper 
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duration is known to be Q , the random variable X is such that when an 

activity duration configuration is realized not only is the numerical 

value of X observed but also the probability, p, of that activity 

duration configuration is available.  This departure from the usual 

estimation situation has been exploited in the formation of the 

estimators for F(C; t). 

3.2 Some Proposed Estimators 

The five estimators of F(C; t) that were considered in this 

research are 

G1(t)   = 

m 

rVt(xi> 
1=1  

m (3.2) 

G2(t) 

m 

1=1  
m 

i=i :L 

(3.3) 

G3(t) 

0 ,    t <  x. 

m 

=  ■ 

(t-x )p 

■ ViVV*   (x.^-x.)   '     ^ll^ 
1=1  3+1   r 

x m 

m (3.4) 

tV* 
1 ,    t  > x     ; 

—    m 
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G4(t) 

0 , t < x. 
m 

m 
I  p I (x ) + 

i-1 

(t-x.)Pj+i(1-^p.) 

, x < t < x ; 1 —     m 

1 , t > x m 

m (3.5) 

and 

G5(t) 

0 , t < x. 

m 

m 
(t-x )(1- E p ) 

1=1 
E p It(x )+ (x   5 

1=1 1   :L      ^Xm X1; 
, x < t < x '  1 —     m 

1 , t > x m 

(3.6) 

where In each case, the x,'s represent an ordered sample of size m from 

the population of subnetwork durations corresponding to the M activity 

duration configurations, p. is the probability of the activity duration 

configuration corresponding to x., j is the largest integer such that 

x. _< t and I (•) is as defined in (2.5). 

Even though sampling will normally only be employed if M is 

very large, for illustration purposes consider M = 20 and that the 

following ordered sample of size m = 5 has been obtained: 

x = 2, x = 2.5, x = 4.0, x = 4.5, x = 5 

P1 = .02, p2 = .03, p3 = .05, p4 = .07, p5 = .03 . 

The G (t), G0(t), ..., G (t) for this sample data are displayed in 

(3.7) 

Figures 7a - 7e, respectively. 
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0.0 

(c) G3(t) l-0f (d) G4(t) 

0.5 

1.0 2.0 3.0 4.0 5.0 
t 

->  0.0 

/ 

/ 

l."o 2'.0 3.'0 4.,0 5.'0   > 

4 

1.0 • Ce)  G5(t) 

/ 

/ 

0.5 - 

/ 
/ 

0.0 

/ 

/  , , * 
1.0 2.0 3.0 4.0 5.0 

Figure 7 

G1(t), GAt) ,  G (t) , G,(t), and G (t) for the sample data in (3.7) 
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The discussion in subsections 3.2.1 - 3.2.5 assumes that the m 

sample points have been selected without replacement. 

3.2.1  The Empirical Distribution Function, G (t) 

In many situations requiring the estimation of a distribution 

function, the empirical distribution function, G..(t), has very 

desirable properties.  However, these properties are derived from 

the assumption that the sample values have been observed with roughly 

the same relative frequency as they occur in the population.  For the 

situation under consideration, though, every x. occurs in the sample 

with relative frequency — regardless of the true value of p.. 

Consequently, G.. (t) was of interest in this study only as a basis 

for comparison and generalization. 

3.2.2  The Modified Empirical Distribution Function, G (t) 

The major disadvantage of G.. (t) is that it ignores the informa- 

tion contained in the p.'s.  Instead of assigning weight — to 

each sampled point, G„(t) assigns to x. the weight 

m 
VJ  I  P, • (3.8) 

1-1 

3.2.3 The Continuous Estimator, G (t) 

Although F is discrete, the subnetwork's actual duration 

distribution is continuous.  Therefore, it was anticipated that a 

continuous estimator might be in order.  The estimator G„(t) is 



34 

continuous and equals G-Ct) at every sampled point but interpolates 

linearly between sample points. 

3.2.4 The Mixed Estimator, G (t) 

The estimator G,(t) has the advantages of a continuous estimator 

between sampled values but preserves the discrete nature at the 

sampled values.  Like G„(t), G,(t) also equals G„(t) at every sampled 

point.  However, at each sampled point x., G.(t) has a jump of size 

p..  For t between x. and x. ^ G, (t) interpolates linearly between 

G2(xi) and G2(xi+1) - P±+1- 

3.2.5 The Mixed Estimator/ G-Ct) 

Like G, (t), the estimator G,-(t) also assigns the discrete jump 

sizes to the sampled points.  However, this estimator spreads the 

probability that is unaccounted for by the sampled values evenly over 

the range x to x . 
i    m 

3.3 Criteria for a Good Estimator 

The quantity being estimated is a distribution function.  Thus, 

a "good" estimator, say G(t), should have the properties of a 

distribution function; namely, 

(1) 0 ± G(t) ±1,   -» < t < " and 

(2) G(t.) £ G(t.) for t. < t. . 

In addition, it is desirable (but not requisite) that the estimator 

be "consistent" in the sense that the estimate of the distribution 
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function based on a sample containing all possible x. is the true 

distribution function of X. 

All of the estimators exhibit the properties of a distribution 

function if the sampling is performed without replacement.  However, 

the estimators G,(t) and G^Ct) may not be between zero and one for 

all t if sampling is with replacement. 

Only estimators G9(t), G.(t), and G (t) are always consistent. 

This follows immediately since if m = M and the sample corresponds 

to all M activity duration configurations, then 

m 
E p <- 1 . (3.9) 

i=l 

Furthermore only G (t) satisfies 

lim G(t) = F(t) (3.10) 

if the sampling is done with replacement. 

Since the mean and upper percentiles of the subnetwork's 

duration distribution are the quantities of primary interest, this 

work also sought an estimator whose estimates of a distribution 

function's mean, y, 90-th percentile, P „, and 95th percentile, P--, 

exhibit a high degree of precision.  The simulation study described 

in subsection 3.5 was designed to determine the suitability of the 

proposed estimators in this regard. 
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3.4 Choosing Between Simple Random or Systematic Sampling 

On the basis of computational ease alone, sampling with replace- 

ment is the preferred method.  However, only G (t) satisfies (3.10) 

if the sampling is done with replacement.  Also G,(t) and G (t) are 

not necessarily distribution functions if the sampling is done with 

replacement.  On the other hand, if systematic sampling is employed 

these difficulties do not arise.  In addition, the simulation study 

described in subsection 3.5 indicates that estimates derived 

from systematic samples contain more information than esti- 

mates based on simple random sampling.  This was anticipated 

since Cochran (1946) showed that for at least partially ordered 
m 

populations the variance of x =  Z x./m under systematic sampling is 
i=l :L 

always less than it is under simple random sampling.  Hence, the 

algorithm does its sampling via the systematic technique if possible. 

Unfortunately, the way a computer represents integers in its memory 

a-1 makes systematic sampling impractical ofM>M =2   -1 where a 
o 

is the number of binary bits in an integer word for the particular 

machine being used.  For most modern IBM computers, a = 32, and thus 

M^ = 2,147,483,647.  When M > M , the algorithm uses random o o 

sampling with replacement. 

3.4.1 An Ordering Scheme 

Unfortunately, the relative magnitude of the subnetwork duration 

corresponding to a particular activity duration configuration cannot 

be determined in general unless all configurations are considered 
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explicitly.  Hence, the following approximate ordering scheme was 

devised. 
n c 

Let v = 1, ..., n index the 2  configurations of activity 

durations corresponding to 

(1) the duration of each activity not in the cluster being 

equal to either its upper duration or its lower duration 

depending on whether a lower bound or an upper bound, 

respectively, is being determined and 

(2) the durations for the activities in the cluster being at 
n 

each of the 2  possible combinations of their upper and 

lower points. 

The activity duration configuration whose corresponding subnetwork 

duration, say x , is approximately the v-th smallest subnetwork 

duration can be determined from g  (v) defined by 
c 

g  (v) = the k-th smallest binary integer containing 
c 

exactly i "1" s 

where 1 is the smallest integer such that 

and 

with 

i n 
c 

v <     E 
.J   . 

f       i 

i-1 n c 
= v  -     E 

j=o 1 

n ^ 
c 

I 3 J 
= nc!/(nc - j)!j! 

(3.11) 

(3.12) 

(3.13) 
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and 
f       } 

-1  n 

'l        .C E 0 . (3-14) 

In particular the activity duration configuration corresponding to 

approximately the v-th smallest subnetwork duration has the j-th 

activity in the cluster equal to its lower duration if the j-th digit 

(counting from the least significant digit) in g  (v) is 0 and equal 
c 

to its upper duration if the j-th digit in g  (v) is 1. 
n 
c 

For v = 1, g  (v) = CL (base 2), so under the approximate ordering 
c 

X-. equals the subnetwork's duration when every activity has its lower 

duration which in fact is the smallest possible x-value.  Similarly, 

x   is the subnetwork's duration when every activity has its upper 

2 c 
* n 

duration and is the largest possible x-value.  For 1 ^ v < v < 2  , 
- s   t 

x  is not necessarily less than or equal to x  .  However, for v 
v J M       v '     s 
s t 

very much smaller than v the activity configuration corresponding to 

gn (vf) has more activities at their upper duration than the one 
c 

corresponding to g  (v ),  Hence, x  is likely to be larger than x 
n  s v &       v 
c t s 

For example. Table 3 gives the approximate ordering of the x-values 

for the small subnetwork pictured in Figure 8 and described in Table 2 

for the case when all five of the subnetwork's activiites are in the 

cluster C. 
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Figure 8 

A small subnetwork. 

TABLE 2 

The Activity Durations for the Subnetwork in Figure 8 

Activity 

1 
2 
3 
4 
5 

5 
8 
3 
5 
4 

u 

7 
10 
6 
6 
8 
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The Approximate Ord ering of 

TABLE 3 

the x-value ;s for the Subnetwork in Figure 8 

Activity durations corresponding to g5(v) 

V g5(v) 5 4 3 2 1 X 
V 

1 00000 
oooon 
00010^ 
00100^ 
01000^ 
10000^ 
oooin 
00101^ 
00110^ 
01001^ 
01010^ 
01100^ 
10001^ 
10010^ 
10100^ 
11000^ 
00111, 
01011, 
01101, 
OHIO, 
10011, 
10101, 
10110, 
11001, 
11010, 
11100, 
01111, 
10111, 
11011, 
11101, 
11110, 
lllllj 

4 5 3 8 5 12 
2 4 5 3 8 7 14 
3 4 5 3 10 5 14 
4 4 5 6 8 5 15 
5 4 6 3 8 5 12 
6 8 5 3 8 5 16 
7 4 5 3 10 7 14 
8 4 5 6 8 7 17 
9 4 5 6 10 5 15 

10 4 6 3 8 7 14 
11 4 6 3 10 5 14 
12 4 6 6 8 5 15 
13 8 5 3 8 7 18 
14 8 5 3 10 5 18 
15 8 5 6 8 5 19 
16 8 6 3 8 5 16 
17 4 5 6 10 7 17 
18 4 6 3 10 7 14 
19 4 6 6 8 7 17 
20 4 6 6 10 5 15 
21 8 5 3 10 7 18 
22 8 5 6 8 7 21 
23 8 5 6 10 5 19 
24 8 6 3 8 7 18 
25 8 6 3 10 5 18 
26 8 6 6 8 5 19 
27 4 6 6 10 7 17 
28 8 5 6 10 7 21 
29 8 6 3 10 7 18 
30 8 6 6 8 7 21 
31 8 6 6 10 5 19 
32 8 6 6 10 7 21 
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3.4.2  Implementing the Ordering Scheme 

An efficient algorithm for finding the k-th smallest binary 

integer containing exactly i "1"s was developed.  The algorithm is 

as follows: 

1.  Let 

NP = the number of binary digits whose values are as yet 

undetermined, 

NX = the number of the NP remaining digits that are to be 

assigned the value "1", and 

J = the location of the digit whose value is currently 

being determined as counted from the right. 

2.  Set NP = n , NI = i, J = n , B = 
c c 

n 
c 

, R = B - k . , i r 

3. If NI < 1, assign the value "0" to all remaining digits 

and stop.  Otherwise, set 

B = B x NI/NP 

NI = NI - 1 

NP = NP - 1 

RR = R - B. 

If RR £ 0, go to 4.  Otherwise, go to 5. 

4. Assign the J-th right-most digit the value "1".  Set 

J = J - 1.  Go to 3. 

5. Assign the J-th right-most digit the value "0".  Set 
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J - J - 1 

R = RR 

B = B   (NP - NI)/NP 

NP = NP - 1 

RR = R - B . 

If RR £ 0, go to 4.  Otherwise, do 5 again. 

3.5  The Simulation Study 

Since a subnetwork's duration distribution is the distribution 

of the maximum path length, most subnetwork duration distributions 

are skewed left.  Nevertheless, the behavior of the proposed estimators 

G..(t), ..., Gj-Ct) was determined for samples drawn from populations 

exhibiting a variety of distributional shapes.  Since the beta dis- 

tribution with probability density function (p.d.f.) 

Ba,B(t) " r(a)r(3) t       ^       ^ a, 6 > 0 , 

0 < t < 1      (3.15) 

is a finite range distribution which can assume a wide variety of 

shapes, the subnetwork duration distributions corresponded to 

B23,2(t)' B8,2(t)' B5,5(t)' B2,8(t)'  and B2,23(t) 

in the simulation study.  (These represent the shapes highly skewed 

left, skewed left, symmetrical, skewed right, and highly skewed 

right, respectively, as indicated in Figure 9.) 
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I—> B 23,2 

5,5 

2,23 

Figure 9 

Duration distributions used In the simulation study. 
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The discrete subnetwork duration distribution, say F  ., corre- 
a, p 

sponding to B   was constructed by randomly selecting 

tl - t2 - '•• - t999-t1000 = 1•0 ' 

and defining 

Fa.e(t) ■ 0 ' t < h 

= / :L Bry R(x)dx ' 
0 

= 1 , t .> 1.0 , (3.16) 

Therefore in the simulation study M = 1000.  Also, since f^B  n(x)dx '     '0 a,g 

does not exist in closed form unless t = 1, it was evaluated at each 

ti < 1 using an approximation due to Peizer and Pratt (1963). 

Samples of size m were then taken from each of the F  „(t) and 

the estimators G^t), ..., G5(t) were calculated.  In the subnetwork 

analysis procedure, sampling is only employed when practical con- 

siderations dictate the explicit consideration of only a relatively 

small proportion of the subnetwork's activity duration configurations. 

Hence, the only sample sizes considered by this work were m = 10, 20, 

50, and 100 which represent sampling proportions of 1%, 2%, 5%, and 

10%, respectively. 

The performance of the five proposed estimators with respect to 

estimation of the parameters p, P-_, and ?„_ was evaluated for each 

of the F  (t) on the basis of the following three criteria a,6 6 
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(i)   mean deviation, 

200 IY.-YI 
MD(Y) =  E   onn  , (3.17) . ,   200 x=l 

(ii)  mean square error. 

200 (Y^-Y)2 

MSE(Y) = I    —2oo— , and (3.18) 
i=l 

(iii) bias. 

200 Y, 

BIAS(Y) = Z
 2^3 - Y (3-19) 

i=l 

where in each case 

Y = the parameter being estimated (Y = y, PQC-> or PQr,); 

Y. = an estimate of Y based on the i-th sample of size m drawn; 

and 

200 = the number of samples of size m drawn. 

3.5.1 A Comparison of G.. (t), ..., G-(t) under Systematic Sampling 

Tables 4-8 indicate the simulation results for the proposed 

estimators under systematic sampling.  The following observations 

may be made: 

(1) For every case considered, G.. (t) and G[.(t) yielded highly 

biased estimates of at^ least one of the 3 parameters y, 

Pqr, and ?„„ while G?(t), G„(t), and G,(t) are only 

moderately biased. 



TABLE 4 

Simulation Results for the Highly Skewed Left F  „(t) Having y 92122, P95 = 98763, P9Q  = 97805* 
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1 50149 41972 17700 -41972 100000 1237 15 -1237 100000 2195 48 -2195 
91275 2592 99 -846 97518 2586 126 -1246 95593 3538 200 -2212 

1% 85677 6454 508 -6445 95508 3471 201 -3255 93806 4241 269 -3999 
85724 6408 503 -6398 95575 3406 196 -3188 93888 4166 263 -3917 
50482 41640 17340 -41640 95200 3562 128 -3563 90523 7282 536 -7282 

1 49986 42135 17774 -42135 100000 1237 15 -1237 97642 1343 27 -164 
91480 1971 60 -641 97424 1801 56 -1339 96218 2189 90 -1587 

2% 88844 3320 158 -3278 96381 2437 85 -2382 94870 2987 134 -2935 
88894 3286 155 -3227 96470 2350 81 -2293 94958 2903 130 -2847 
50928 41193 16972 -41193 95430 3334 114 -3334 91132 6674 458 -6674 

1 49884 42238 17843 -42238 97469 1294 21 -1294 92400 5405 296 -5405 
91902 1101 19 -220 98225 854 14 -539 97481 1182 22 -324 

5% 90844 1524 33 -1277 97466 1335 29 -1297 96660 1375 30 -1145 
90895 1496 33 -1227 97531 1283 28 -1232 96735 1322 28 -1070 
52108 40014 16019 -40014 95897 2867 85 -2867 92388 5418 310 -5418 

1 
49851 42271 17869 -42271 97010 1754 33 -1754 90963 6843 469 -6443 
91922 90A 13 -200 98598 561 4 -165 97616 764 9 -189 

10% 91375 1048 17 -746 98107 695 8 -656 97226 882 11 -579 
91429 1030 17 -692 98153 657 7 -609 97307 822 10 -498 
54153 37968 14442 -37968 96490 2274 55 -2274 93792 4012 179 -4012 

* All entries have been multiplied by 10" a. 
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Simulation Results for the Skewed Left F   (t) Having y = 80127, P  = 96008, P 94100* 
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50149 29978 9071 -29978 100000 3992 159 -1992 100000 5900 348 -5900 
79420 3674 203 -707 92007 5005 384 -4001 90558 5024 416 -3542 

1% 73134 7247 711 -6993 89697 6356 563 -6310 87207 6949 666 -6893 
73184 7206 704 -6944 89770 6292 554 -6238 87270 6895 658 -6830 
50374 29754 8853 -29754 95034 981 10 -973 90127 3973 158 -3973 

\ 

49986 30141 9105 -30141 100000 3992 159 -3992 97641 3542 152 -3542 
79937 2305 101 -191 93913 3182 179 -2095 92167 3204 184 -1933 

2% 77170 3617 190 -2957 92033 4031 255 -3975 90077 4155 280 -4022 
77220 3584 187 -2907 92097 3984 251 -3911 90133 4114 276 -3967 
50679 29449 8672 -29449 95066 959 9 -941 90261 3839 148 -3839 

1 49884 30243 9150 -30243 97469 1467 26 1461 92400 1699 32 -1699 
79795 1626 43 -332 95200 1762 47 -808 93135 1826 51 -964 

5% 78726 2001 62 -1401 94201 2011 63 -1807 92188 2174 68 -1912 
78777 1974 61 -1350 94267 1971 61 -1741 92246 2134 66 -1854 
51543 28584 8172 -29594 05134 900 9 -874 90595 3505 125 -3505 

\ 

49851 30277 9168 -30277 97010 1002 12 1002 90963 3137 99 -3137 
79708 1987 53 -420 95166 1140 21 -842 93456 1668 41 -644 

10% 79167 2157 62 -960 94745 1382 29 -1263 92850 1786 45 -1250 
79220 2143 61 -907 94822 1344 28 -1186 92902 1760 44 -1198 
53046 27081 7340 -27081 95224 820 8 -783 91076 3023 96 -3033 

* All entries have been multiplied by 10" 
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Simulation Results for the Symmetric F   ( 
5,5 

t) Having M = 50107, PQ5 = 74892, P90- 69918* 
CO 

B   (B 
CO 
rt s w s 

S! §5 
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>*• 

G
rl 50149 2502 84 42 100000 25108 6304 25108 100000 30082 9049 30082 
P2 

49798 3664 205 -309 71385 5230 645 -3507 67119 7398 898 -2799 1% 
.3 

43308 6985 658 -6800 67175 8260 1023 -7718 62090 8498 1113 -7828 
^4 43360 6939 651 -6748 67251 8192 1011 -7642 62160 8437 1100 -7758 
S 50133 34 0 25 94973 20080 4032 20080 89947 20029 4012 20029 

^1 49986 1224 21 -121 100000 25108 6304 25108 97642 27724 7713 27724 
S 49808 3334 164 -299 73208 4345 259 -1684 68825 4068 237 -1093 2% 
n3 

46864 4075 264 -3243 70871 4926 357 -4022 66021 4974 346 -3897 
G4 

46918 4050 261 -3189 70938 4876 351 -3955 66085 4934 341 -3833 
S 50130 60 0 22 94920 20028 4011 20027 89850 19932 3973 19932 

G
rl 49884 514 3 -223 97469 22576 5101 22576 92400 22482 5058 22482 

G
r2 49743 2328 76 -364 74020 2527 97 -872 69763 2683 115 -155 

5% 
.3 

48610 2530 97 -1497 72953 2923 133 -1939 68610 2665 115 -1308 
5 48665 2515 95 -1442 73019 2873 118 -1873 68673 2632 113 -1245 
G5 50122 117 0 14 94761 19869 3948 19869 89600 19682 3874 19682 

Gl 49851 307 1 257 97010 22117 4894 22117 90963 21044 4430 21044 
G2 50026 1251 21 -81 74652 1564 41 -240 69884 2006 64 -34 

10% G3 49446 1286 25 -661 74138 1782 48 -754 69281 1999 63 -637 
G4 49503 1278 24 -603 74194 1760 47 -699 69343 1975 62 -575 
G5 50136 123 0 28 94570 19677 3872 19677 89288 19370 3753 19370 

A All entries have been multiplied by 105. 
00 
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Simulation Results for the Skewed Right F2 8(t) Having p = 20067, P95 = 42929, P 90 
36912* 
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9133 
181 
389 
385 

8897 

3082 
141 

-4946 
-4919 
29827 

100000 
41767 
37129 
37188 
94794 

57071 
5436 
6688 
6640 

52044 

32571 
490 
671 
663 

27086 

57071 
-1162 
-5800 
-5741 
52044 

100000 
35497 
30775 
30839 
89948 

63088 
6699 
7338 
7285 

53036 

39801 
718 
871 
861 

28128 

w 
> 
CO 

i^3 
O 

63088 
-1414 
-6136 
-6073 
53036 

2% 

49986 
19867 
17288 
17332 
49562 

29919 
2283 
3233 
3200 

29495 

8972 
84 

156 
153 

8700 

29919 
-200 

-2779 
-2735 
29495 

100000 
41938 
39630 
39683 
94918 

57071 
3809 
4479 
4446 

51988 

32571 
221 
304 
301 

27028 

57071 
-991 

-3299 
-3247 
51988 

97641 
36214 
33979 
34041 
89841 

60730 
4003 
4576 
4534 

52929 

36908 
268 
314 
309 

28015 

60730 
-698 

-2933 
-2870 
52929 

5% 

49884 
20034 
19008 
19058 
48635 

29817 
1375 
1793 
1764 

28568 

8894 
32 
42 
41 

8162 

29817 
-33 

-1059 
-1008 
28568 

97469 
42323 
41319 
41368 
94753 

54540 
2114 
2390 
2371 

51823 

29750 
72 
87 
84 

26857 

54540 
-606 

-1610 
-1561 
51823 

92400 
36311 
35474 
35530 
89594 

55489 
2596 
2739 
2707 

52682 

30793 
102 
113 
111 

27755 

55489 
-600 

-1437 
-1382 
52682 

10% 

49851 
20093 
19563 
19615 
47141 

29784 
960 

1062 
1040 

27075 

8871 
13 
15 
15 

7332 

29784 
26 

-504 
-452 

27075 

97010 
42990 
42488 
42538 
94547 

54080 
1788 
1780 
1781 

51617 

29249 
48 
47 
47 

26643 

54080 
61 

-441 
-391 

51617 

90963 
36832 
36122 
36183 
89182 

54051 
1778 
1902 
1867 

52270 

29216 
48 
54 
52 

27322 

54051 
-380 
-790 
-729 

52270 

* All entries have been multiplied by 10" 



TABLE 8 

Simulation Results for the Highly Skewed Right F   (t) Having y = 8072, P  - 18309, P  = 15444* 
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i 
50149 42077 17788 42077 100000 81691 66734 81691 100000 84556 71497 84556 

G2 6543 2188 74 -1529 15888 4864 369 -242 13125 5164 399 -2319 
1% G3 

3950 4139 192 -4123 12584 5965 519 -5725 9742 5981 499 -5702 
G4 3894 4192 197 -4178 12648 5909 511 -5662 9795 5934 493 -5649 
G5 49724 41652 17350 41652 94966 76657 58762 76657 89932 74488 55484 74488 

Gl 49986 41914 17588 41914 100000 81691 66734 81691 97642 82197 67591 82197 
G2 7664 1217 23 -408 17050 3421 173 -126 14211 2867 126 -1233 

2% 
^3 

5749 2404 73 -2322 14976 3706 206 -2224 12394 3532 173 -3050 
G4 5757 2394 72 -2315 15037 3656 201 -3272 12453 3489 168 -2991 
G5 49257 41184 16963 41184 94908 76599 58674 76599 89825 74381 55325 74381 

Gl 49884 41812 17486 41812 97469 79160 62667 79160 92400 76956 59226 76956 
G2 7964 858 12 -108 17740 2256 68 -569 15147 1821 47 -297 

5% G3 7090 1232 22 -983 16952 2238 67 -1357 14276 1934 52 -1169 
G4 7123 1203 21 -949 17011 2203 65 -1298 14330 1906 50 -1114 
G5 

47970 39897 15922 39897 94746 76437 58426 76437 89587 74141 54970 74141 

Gl 49851 41779 17544 41779 97010 78700 61940 78700 90963 75518 57031 75518 
G2 7953 579 6 -119 17991 1054 18 -318 15410 1085 16 -34 

10% G3 7469 762 10 -603 17476 1221 22 -833 14854 1059 16 -590 
G4 7513 738 9 -559 17527 1190 21 -782 14896 1038 16 -548 
G5 45895 37823 14311 37823 94548 76238 58123 76238 89198 73754 54398 73754 

c 

* All entries have been multiplied by 10' 

o 
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(2) In the vast majority of the cases considered, G„(t) and G.(t) 

performed virtually the same In all respects while G„(t) 

performed approximately twice as well as either G„(t) or 

G4(t). 

(3) The relative performances of G..(t), ..., G^Ct) remained 

virtually unchanged as m increased. 

(4) As would be expected, all five estimators increased in pre- 

cision as sample size increased. 

On the basis of these observations, G„(t) appears to be the "best" 

estimator and is the one implemented by the subnetwork analysis 

procedure. 

3.5.2  The Performance of G2(t) under Systematic and Ramdom Sampling 

Table 9 presents a comparison of the performance of the estimator 

G (t) for both systematic sampling and random sampling under a variety 

of sampling conditions.  In almost every case, systematic sampling 

was superior to random sampling and hence is the preferred technique. 



TABLE 9 

Ratios of the Empirical Behavior of G2(t) Using Systematic Sampling to that Using Random Sampling 
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F8,2 .5065 .2416 .2581 .2613 .5860 .2748 .2660 .5370 .5646 .2591 .2819 .4677 

1% F5,5 
.5472 .2804 ,2813 .4256 .5506 .2986 .3425 .4397 .6902 .4827 .5582 .4472 

F2,8 .6163 .3514 .3535 .2655 .5379 .3037 .3210 .3265 .6721 .4680 .4830 .4722 

F8,2 
.4958 .2664 .2724 .1744 .6764 .3800 .4096 .5607 .6690 .3602 .3772 .5559 

2% F5,5 
.7842 .5655 .5620 4.4626 .6850 .3984 .4408 .4737 .6317 .3405 .3668 .3863 

F2,8 
.5858 .3373 .3374 -.4000 .5599 .3031 .3063 .5132 .5955 .3681 .3651 .9369 

F8,2 .5932 .3440 .3378 .8058 .6447 .3730 .4166 .4635 .6010 .3187 .3387 .5020 

5% F5.5 
.9260 .7835 .7732- -15-1666 .7586 .4663 .4545 .8635 .7185 .5324 .5476 .2069 

F2,8 
.6255 .4102 .4102 1.2692 .5039 .2696 .2635 .6615 .6204 .3541 .3438 .1047 

F8,2 1.1572 1.1521 1.1555 1.6627 1.5619 2.2203 2.8222 5.8276 5.7114 .3281 .2500 .9418 

10% F5.5 
.7099 .4468 .4468 1.3728 .5955 .3628 .3703 .3283 .6487 .4571 .4812 .4057 

F2.8 
.6387 .3513 .3611 .8929 .6441 .4247 .4247 .9838 .6515 .4000 .3916 -6.7857 

N3 
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4.  ESTIMATION OF A DISCRETE DISTRIBUTION FUNCTION 

BY EXTRAPOLATING UPPER AND LOWER BOUNDS 

4.1  Introduction 

Since it is sometimes impractical to completely enumerate a 

subnetwork's discrete duration distribution, F, the bounds F (t; 6, A) 

and F~(t; 9, A) are calculated as a first step in the determination 

of an estimate, F, of F.  Theorems 4 and 5 of section 2 imply that 

for 6 very large both F (t; 6, A) and F (t; 6, A) may serve as 

adequate estimates of F.  Unfortunately, it becomes increasingly 

laborious to calculate these quantities as 9 -»■<».  Hence the extrapo- 

lation procedure described in this section was devised as a practical 

alternative to evaluating the upper and lower bounds for large 9. 

4.2  The Extrapolation Problem 

Suppose that for a particular subnetwork, the numerical values 

of F (t; 9, A) and F~(t; 9, A) are available for each of the combina- 

tions of t - t,, ..., tj  and (9, A) - (9^ X^,   ..., (Sj, Xj) where 

(1) t. < t.,n for all i and i — i+l 

(2) 9. < 6.J, and A. < \.,.   for all j. 
j — j+1     3 - 3+1 

The specific goal of the extrapolation procedure is to estimate F at 

the points t, , t0, ..., t,. 

Let 

a) = 1/(1 + G) 

UJ = 1/(1 + 9.) ,      j = 1, ... , J , (4.1) 
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and define 

(a) H+(t, w) = F+(t; 6, A)  and 

(b) H (t, to) = F"(t; 6, X) . (4.2) 

Then the results of Theorems 4 and 5 can be restated as follows 

(a) H (t, oi) is a nondecreasing function of cx> for every 

t; H (t, w) is a nonincreasing function of co for 

every t; 

(b) for any a) and t 

H+(t, u>) > F(t) > H"(t, u) ; 

and 
■ 

(c) there exists a finite value w* such that w £ u* 

implies H (t, w) = H (t, u) = F(t) for every t. 

Thus, estimating H (t, 0) and H (t, 0) is the same as estimating 

F(t).  Although viable estimates of F(t) can be obtained in a variety 

of ways, the proposed procedure uses the known quantities H (t., w.) 

and H (t , w.) (i = 1 I; j =1, ..., J) to estimate functions 

H (t, CJ) and H (t, w) satisfying 

(1) H (t^ co.) :> H (t., (o.+1) for each i and j; 

(2) H (t , co.) £ H (t , w .) for each i and j; and 

(3) H+(ti, 0) = H"(ti, 0) < H+(ti+1, 0) = H"(ti+1, 0) for 

each i. (4.3) 
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and then estimates F(t.) by 
i 

F(t.) = H+(t., 0) = H (t., 0)      i = 1, ..., I •    (4.4) 
x'     • i'  '      i 

:+, 
The basic idea is simply for each t. to fit a function H (t., to) 

(as a function of u) to the sequence of upper bounds on F(t.) namely 

H (t., CJ1 ), ..., H (t., w ) and also fit a function H (t , u) to the 

lower bounds on F(t.) under the restriction that 

limH+(t., u) = limH~(t., w) . (4.5) 

Since F(t1) £ ... £ F(tT), the additional restriction that 

E+itv   0) £ ... 1 H+(tI, 0) (4.6) 

is imposed so that 

F(t1) <_  ... < F(tI) . (4.7) 

4.3 A Linear Programming Solution to the Extrapolation Problem 

The determination of H and H is as follows.  For each i let 

H it±,   co) = a0i + alia) + a^2 (4.8) 

and 

H (t., a)) - e0i + ^ +  32iw
2 (4.9) 

where aQ ,   a1±,   a2±,   $Q±t   &1±,   and B2i i = 1, ..., I are all constants 

determined so that (4.3) holds.  Since (4.4) is a quadratic function in 

oj, requirement (1) of (4.3) is met by requiring 
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a
1± 1° i - 1,   ....   I   . (4.10) 

Similarly,   cequlroment   (2)   of   (4.J)   Is  met  by   restricting 

eii 1 0      i - 1, .... I . (4.11) 

Finally, requirement (3) is met by requiring 

a0i = 3oi ^ ao,i+i " 3o,i+i    i ■ 1' •"-  I •  (4-12) 

Of course, when the restrictions (4.10), (4.11), and (4.12) are 

enforced, it is not always possible to have 

(1) H+(ti, w.) = H+(t., u.) and 

(2) Vr(t±i  u ) = B~it±,   to ) (4.13) 

for all i and j.  Hence, the constants a^., a,., a.., 0-.. g,., J 01'  li  2i'  0i'  11' 

and 3?. (i = 1, ..., I) are determined by minimizing 

J        I  .. 
E  a(oj.)[ E (JH (t., a).) - H (t., w.) | + |H (t., to.) 

j=l   :,  i=l     1       3 ^       2 X       3 

-  H"(t., to )|)] (4.14) 

under the restrictions (4.10) - (4.12) where the a(a).) is a specified 

nonnegative weighting constant. 

The weights, a(a)), in (4.14) should reflect the increase in 

information about F(t) as a: ->• 0 (i.e., Q -* <*>) .     In the algorithm the 

weight a(aj) has been defined to be 

a(u)) = 1 - 2a)2 + 3a)3  . 
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The coefficients in the cubic function were selected so 

a(0) = 1, a(l) = 0, and da(a)) 
dto 

da((jj) 

u)=0   dto a)=l 
= 0 

(4.15) 
Hence, the points a) = .25 and w = .5 which correspond to 0 = 3 and 

8=1, respectively, have weights .84375 and .50000, respectively. 

The minimization of (4.14) subject to (4.10) - (4.12) can be 

restated as 

minimize  E a(cj.) Z (u. . + v. .) 
j-1  j 1=1  ^    J 

subject to 

"Uij -J^ + a^ + (a211 
J   k=l 

a2i2)uj 
H (tj, u.) < u.. for all i, j 

i  J - ij 

-v.. <   E Y, - 3,-w. + (e„41 ij - k:=1 k   li j    211 212' 2 
H (t., to.) < v. . for all i, j 

E Yk-1 

k=l fc 
(4.16) 

Uij' Vij' ai' 3li' aii' a2il' 32i2' 32il' B2i2 ^ 0  for a11 ^ J 

where 

a2i  a2il  a2i2 ' (4.17) 

521 - B2;L1 - e2i2 , and 

a0i = B0i = E Yk 
k=l 

(4.18) 

(4.19) 

This is a linear programming problem which may be solved using any 

standard method.  In the computer implementation of the subnetwork 
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analysis procedure, a streamlined version of the revised simplex 

algorithm was especially prepared and implemented to solve this 

problem.  Once this linear programming problem has been solved, F is 

retrieved through the relation 

i 
F(t ) - 2 Y.  for all i . (4.20) 

k=l k 

If the upper bounds F (t, 9, A) and lower bounds F (t; 6, X) were 

determined without sampling then 

H+(ti, w1) >....> H
+(ti, Wj) > FCtp > iTCt^ Wj) > ••• 1 H'C^, W1) . 

However this relationship does not necessarily hold if sampling is 

used in the determination of the bounds.  Hence the determination of 

H (t, w) and H (t, w) does not include the restriction 

H"(t,, wj < F(t.) < H+(t., wT)      i = 1, ..., I . 

It should also be noted that, if a weighted least squares 

criterion had been used instead of minimization of a weighted sum 

of absolute residuals, then the determination of F(t) would have been 

a quadratic programming problem instead of a somewhat simpler linear 

programming problem. 

4.4 An Example of the Linear Programming Solution 

Using the simplex algorithm referred to in subsection 4.3, the 

linear programming problem (4.16) was solved for the data in Table 10. 

Figure 10 indicates the fits obtained. 



59 

TABLE 10 

Extrapolation Data 

61 = 1.5 (^ = .4) 

02 = 2.5 (w2 = .2851) 

33 = 3.5 (M3 = .2222) 

t F+(H+) F   (H  ) 

ii 
.7 0.0 
.8 .3 

1.0 .5 

'i 
.4 .15 
.6 .3 
.75 .6 

1 .35 .25 
.55 .45 
.75 .65 



1.0 X    1.0 

.71 

FCt^ 

.0 

F(t2) 

.43 

.2 
0) 

As required, FCt^) = .31 <. F(t2) = .43 <. FCO = .71. 

Figure 10 

Extrapolation results for the data in Table 10. 

o 
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5.  POTENTIAL MODIFICATIONS OF THE 

SUBNETWORK ANALYSIS PROCEDURE 

5.1 Introduction 

The objective of Subnetwork Analysis is to determine each sub- 

network's duration distribution, say F(t). When this step is begun, 

each activity has a specified duration distribution.  Let 

n = number of activities in the subnetwork, 

X. ■ the duration of activity i, and 

F  (t) = the c.d.f. for activity i. 
i 

Also, let 

m = the number of paths through the subnetwork, and 

Y. = the length of the j-th path through the subnetwork 

= I  6..X. 
1=1 XJ 1 

(5.1) 

where 

6.. = 1 if activity i is on the j-th path 

= 0 otherwise. 

Let the maximum path length be 

Y* - max Y.. 
l<J<m :, 

(5.2) 

Then 

F(t) = P(Y* < t) dF Y,. , Y (tl' 
m 

m 
(5.3) 

where 

F (t , ..., t ) = the joint distribution of the m paths. 
i - s •»• • i   -L        in 
1       m 
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The activity distributions are assumed to be independent.  Thus, 

the marginal distribution of Y., say F  (t), is the convolution of the 

path s activity duration distributions; that is. 

FY (t) = | ... 
j 

FY  (t -  E  6..X.) n   dF  (X.) 
X.      ./.  xj i .,.    X.  i 
Jl    ^l     ^l    ± 

136J.=1 

(5.4) 

where ^ is the index of an activity on the path.  Furthermore, if 

F |x(t) 

denotes the conditional distribution of Y. given a set, X, of activity 

duration values, then 

r  r 
FY lx(t)= F  (t - i    6 X ) n   dFY (X.) 

h       ^i 
(5.5) 

196..=1 
ij 

X (& 

which is the convolution of the path's activity durations not in X. 

If there is no activity that is in two or more of Y. , ..., Y.  (that 
;,1       :1k 

is, these paths have no activities in common), then Y  , ..., Y  are 
Jl       Jk 

independent, and 

Fy        Y  (t  , ..., t  ) =  n F   (t  ) (5.6) 

However, if 

X = {X |activity i is in more than one of Y., ..., Y } 1 1       m 

is a nonempty set, then Y , ..., Y are dependent, and 

F(t) = 
m 

[ n F , (t - z   6..x )] n dFY (x.) 
j=i Yj|X   x^x ^  1 x^x xi 1 

(5.7) 
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5.2 Explicit Evaluation of the Subnetwork 

Duration Distribution 

For simple subnetworks it is relatively easy to identify all of 

the paths and give an explicit expression for F(t) via (5.7).  In 

particular Hartley and Wortham (1966) considered series, parallel, 

and Wheatstone Bridge subnetworks (see Figure 11).  Ringer (1969) 

extended this work to include Double Wheatstone Bridge and Criss-Cross 

subnetworks (see Figure 12).  These exact expressions for the subnet- 

work duration distribution form the basis of Step 2, Simplification, 

in the project scheduling procedure.  Interestingly, this implies 

that the subnetworks actually considered in Step 4, Subnetwork 

Analysis, do not have any of these simple activity configurations in 

them, and hence are generally fairly complex. 

To utilize (5.7) to determine F(t), all the paths through the 

subnetwork must be identified and then the numerical evaluation of 

(5.7) performed. Martin (1964) presented a clever method for per- 

forming the numerical evaluation of (5.7) when the activity duration 

distributions were all piecewise polynomial functions with finite 

ranges.  Martin's technique is most readily suited to subnetworks 

primarily composed of activities in series or parallel.  Unfortunately, 

the subnetworks generally encountered in the Subnetwork Analysis step 

are not of this form.  Furthermore, Martin's technique becomes com- 

putationally impractical for large subnetworks. 
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Activities in Parallel 

Two Activities in Series 

Wheatstone Bridge 

Figure 11 

Subnetworks considered by Hartley and Wortham (1966) 
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Double Wheatstone Bridge 

Criss-Cross 

Figure 12 

Subnetworks considered by Ringer (1969) 
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5.3 Approximating the Subnetwork Duration 

Distribution F(t) 

Since the explicit evaluation of the exact expression for the 

subnetwork duration distribution F(t) given in (5.7) is generally 

impractical for other than simple subnetworks, several authors have 

considered approximating F(t) .  A review of the classical approximation 

procedures is given in Moder and Phillips (1974).  The more recent 

approximation procedures are essentially based on either sophisticated 

Monte Carlo simulation or the determination of upper and lower bounds 

for F(t).  The Subnetwork Analysis procedure developed in Sections 

2 - 4 is one of these approximation procedures.  That Subnetwork 

Analysis procedure basically estimates F(t) by extrapolating a 

sequence of upper and lower bounds on the subnetwork's discrete 

duration distribution F - with specialized Monte Carlo techniques 

sometimes employed in the determination of the upper and lower bounds. 

Noteworthy papers on the Monte Carlo simulation of F(t) include 

Van Slyke (1963), Gaver and Burt (1968), and Burt and Carman (1971). 

The two outstanding published techniques for determining upper 

and lower bounds on F(t) are due to Robillard and Trahan (1977) and 

Kleindorfer (1971).  These techniques are briefly discussed in 

subsections 5.3.1 and 5.3.2, respectively. 

Subsection 5.3.3 indicates several ways that the Monte Carlo 

techniques and the upper and lower bounds of Kleindorfer (1971) and 

Robillard and Trahan (1977) can be incorporated into the general 

Subnetwork Analysis procedure. 
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5.3.1 Robillard and Trahan's Lower Bound on F(t) 

Robillard and Trahan (1977) proposed a lower bound, F (t), for 

F(t) based on a Bonferroni inequality.  Specifically, 

m m 
P( max Y. > t) = P( U {Y. > t}) < E P(Y. > t), (5.8) 

l<j<m •* j=l -'        j=l  ^ 

so 
m 

F(t) = P( max Y. ^ t) = 1 - P( max Y. > t) > 1 - E P(Y. > t) 
l<j<m ■'   " ifJl?1 J=1       2 

(5.9) 
m m 

= 1  -     Z   [1  -  FY   (t) ]   = 1  - m +     E  FY   (t)   E   F   (t) . 
j"l J 3=1    2 

m 
Robillard and Trahan (1977) evaluate the term E FY (t) using the 

J-l j 
characteristic functions, say ^  (x), ..., A  (T), of Y , ..., Y . 

1 m 
Let I denote the integration corresponding to the inversion of a 

characteristic function.  Then 

mm m 
I FY (t) = E i [^ J » I [ S *_ ] (5.10) 

j-l J   j-l   J    J-l J 

where the last equality follows from the linearity of integration. 

For example, if Yn, ..., Y are all continuous random variables, then 
1       m 

m m 

£ itWY CO] =   s { 
ft 

i e iTx^y  (T)dTdx} 
j-l j j-l  '-^-^ j 

rt 
I 

J   J 

m 
^ e"1^    E  *Y  (T)dTdx (5.11) 

j-l    j 

m 
It[    2   *Y    (T)] 

j-l      j 
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Although ty     (T) can be written as the product of the character- 
3 

istic functions for the individual activities in Y., this approach 
m 3 

to  evaluating E ^  (T) would require the explicit enumeration of all 
j=l j 

the subnetwork's paths which is computationally impractical for large 

complex subnetworks.  Therefore Robillard and Trahan (1977) developed 
m 

the following recursive scheme for evaluating S tjj  (T).  Let 
J-l j 

\\)     (T), ..., ij;  (x) denote the characteristic functions of the indi- 
1 n 

vidual activity durations X.., ..., X .  Let the k-th activity originate 

at node Orig and terminate at node TernL .  If 

B^^ = {k|Termk = i}, (5.12) 

(J)(T,1) = 1, and (5.13) 

<f.(T,i) = E  (j)(T,Orig )i|;  (T),  i = 2, ..., N,        (5.14) 
keB.       k Xk 

i 
where N is the number of nodes, then 

m 
E *  (x) = (^(T,N) . (5.15) 

3=1 3 

Although it is not explicitly noted by Robillard and Trahan (1977), 

the number of paths, m, can also be recursively generated.  If 

m1 = 1 (5.16) 

m - Z IIL     i = 2, . . ., N, 
1  k6B. 

i 

then 

111 - v (5-18) 

Apart from any numerical inaccuracies in the computation (5.14), 

the tightness of the lower bound F (t) is the same as the tightness 

of the Bonferroni inequality (5.8). 
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Robillard and Trahan (1977) also note that another Bonferroni 

inequality implies that 

m m 
P( max Y. > t) = P( U {Y. > t}) >_ I P(Y > t) - E P(Y. > t, Y. > t) 

l<j<m J j-1 :l        j=l  3       i<j   :L      2 

(5.19) 

Unfortunately, to use (5.19) as the basis for an upper bound on F(t) 

seems to require the explicit enumeration of the paths because of the 

joint nature of P(Y. > t, Y. > t) and the lack of a convenient upper 

bound for P(Y. > t, Y. > t). 

5.3.2 Kleindorfer's Upper and Lower Bounds on F(t) 

Let the subnetwork's activities be numbered 1=1, ..., n in 

such a way that, if i < j and both activities i and j are on a path, 

then activity i precedes activity j.  Let A, denote the set of 

activities which immediately precede activity i on some path.  As 

before, let 

X. = the duration of activity i 

and also define 

U. = the earliest time at which activity i can commence, 

P.(t) = P(U. <_ t) (5.20) 

V. = U. + X. = the completion time for activity i, and 

Q. = ^(V. 1 t). 

Kleindorfer (1971) proposed upper and lower bounds for F(t) by 

recursively defining upper bounds, Pl(t) and Ql(t), and lower bounds, 

P'.'(t) and Q'.'Ct) on P.(t) and Q.(t), respectively.  The upper bounds 

P'. (t) are based upon the inequality 
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min P(V, <_ t) > P(max V. <_ t)   = P.(t), (5.21) 
jeA. 2 ' jeA. -' '     1 

i i 

and Q'. (t) is simply the convolution of F  (t) and P!(t).  The lower 
1 X i 

i 
bounds P'.'(t) are based upon the inequality 

P.(t) = P(niax V. £ t) ^ n  P(V. <_ t), (5.22) 
jeA. :I      jeA. ■* 

and Q'.^t) is the convolution of Fv (t) and P'Xt).  (Although Kleindorfer 
i 

proves a version of (5.22), the inequality as stated follows from the 

more general results of Esary, Proschan, and Walkup (1967).) 

The recursive relations for Pl(t), Ql(t), P'.'U), and Q'.^t) are 

as follows:  For notational convenience assume that activity 1 is an 

activity with zero duration which precedes the rest of the subnetwork 

and that activity n is an activity with zero duration which follows 

the completion of the rest of the subnetwork.  Furthermore, assume that 

X. is a discrete, nonnegative random variable taking on values in S 

for all i.  Then, for t >_ 0, 

P^t) = P1(t) = Q1(t) = Q'U) = 1, (5.23) 

P (t) = min Q'(t),   i = 2, ..., n, (5.24) 
J6A. ^ 

Q'(t) = E P(X = s)P:(t - s),   i = 2, ..., n, (5.25) 
s6S :L 

P^(t) = P1(t) = Q1(t) = Q"(t) = 1, (5.26) 

P"(t) - n Qy(t),   i = 2, ..., n, and (5.27) 
J6A. 1 

Q"(t) = E P(X = s)P,.,(t - s),   i = 2, ..., n. (5.28) 
J     seS 
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Finally, 

Pj(t) £ F(t) l^(t). (5.29) 

The computational beauty of these bounds on F(t) is that they do 

not necessitate the enumeration of all of the subnetwork's paths. 

The tightness of these bounds on F(t) depends on the structure of 

the subnetwork.  Since the recursive relations (5.23) - (5.28) 

sequentially bound the P.(t) in terms of the bounds for the completion 

time distributions of the activities immediately preceding activity i, 

the differences Pi (t) - P, (t) and P.(t) - P'.'tt) essentially cumulate 

as i increases.  Therefore, the bounds on F(t) will generally tend 

to be tighter the shorter the subnetwork's paths.  Furthermore, the 

difference 

min P(V. It)- P(max V. £ t) (5.30) 
J6A.   ^ i6A. ^ J  1 J  i 

tends to decrease as the V.'s have more and more activities in common; 

whereas, the difference 

P(max V. £ t) - IT P(V. £ t) (5.31) 
jeA. ^       j6A.  •* 

tends to increase as the V.'s have more and more activities in common. 
J 

Thus subnetwork structures that lead to tight upper bounds on F(t), 

lead to loose lower bounds on F(t), and vice versa.  Of course, the 

tightness of both the upper and lower bounds tends to decrease as 

the number of paths increases. 
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5.3.3 Incorporating Different Methods of Approximating F(t) into 

Subnetwork Analysis 

The Monte Carlo simulation techniques and the bounding procedures 

of Kleindorfer (1971) and Robillard and Trahan (1977) referred to thus 

far in subsection 5.3 could be used to modify the current Subnetwork 

Analysis procedure discussed in Sections 2-4.  Since the empirical 

experience with the modifications to be briefly described in the 

remainder of this subsection is generally extremely limited, these 

potential modifications are really subjects for future research. 

A Monte Carlo simulation of the subnetwork duration distribution 

F(t) could, of course, essentially replace the current Subnetwork 

Analysis procedure.  A less radical revision would be to carry out 

the cluster formation procedure described in subsection 2.2 for a 

fixed (presumably large) value of (6,A); let IMPORTANT be the set of 

all activities in the unionof the clusters; and then estimate F(t) 

by fixing the durations of the activities not in IMPORTANT at their 

mean values and doing a Monte Carlo simulation of the durations for 

the activities in IMPORTANT.  The durations of the activities in 

IMPORTANT could be simulated from either their actual distributions 

or their approximate two-point discrete distributions.  Another 

potential modification would be to perform the current Subnetwork 

Analysis procedure as is except that the upper and lower bounds 

F (C;t) and F (C;t) used in determining F~(t;0,X) and F+(t;e,A) 

could be determined with the durations for activities in C determined 

by a Monte Carlo simulation of their actual duration distributions or 

to their two-point discrete distributions. 
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Another possible replacement for the current Subnetwork Analysis 

procedure would be to determine Kleindorfer's upper bound on F(t) 

and either Kleindorfer's or Robillard and Trahan's lower bound on F(t) 

and then use the average of these two bounding distributions as the 

estimate of F(t).  (Of course, the maximum of Kleindorfer's and 

Robillard and Trahan's lower bounds is also a valid lower bound.) 

Again a less radical revision would be to carry out the cluster 

formation procedure described in subsection 2.2 for a fixed (presumably 

large) value of (e,A); let IMPORTANT be the set of all activities in 

the union of the clusters; and then estimate F(t) by fixing the dura- 

tions of the activities not in IMPORTANT at their mean values and 

averaging the upper and lower bounds for the subnetwork duration 

distribution when the durations for the activities in IMPORTANT have 

either their actual distributions or their two-point discrete 

distributions.  The durations for the activities not in IMPORTANT could, 

alternatively, be fixed at their lower values when the upper bound 

is being determined and be fixed at their upper values when the lower 

bound is being determined.  Finally, another potential modification 

would be to perform the current Subnetwork Analysis procedure as is 

except that the upper and lower bounds F (C;t) and F (C;t) could be 

either Kleindorfer's or Robillard and Trahan's bounds determined with 

the durations for the activities in C having either their actual 

distributions or their two-point discrete distributions. 

Presumably, a project scheduler might settle for a project 

schedule which has the probability of the project's completion by 

the specified deadline bounded from below by a specified amount. 
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In such instances lower bounds on the subnetwork duration distributions 

suffice.  Then the Subnetwork Analysis procedure could be replaced 

by a procedure which simply determines either Kleindorfer's or 

Robillard and Trahan's lower bound. Alternatively, the cluster forma- 

tion procedure could be carried out for a specified value of (e,X), 

the set IMPORTANT of all activities in the union of the clusters 

formed, and then either Kleindorfer's or Robillard and Trahan's 

lower bound computed with the durations for the activities outside 

IMPORTANT fixed and the durations for the activities in IMPORTANT 

having either their actual distributions or their two-point discrete 

distributions. 

5.4 Additional Probability Inequalities as Bases for 

Upper and Lower Bounds on F(t) 

In addition to the ones cited in subsections 5.3.1 and 5.3.2, 

there are other known probability inequalities which imply upper and 

lower bounds on F(t) = P( max Y. £ t).  Three upper bounds on 
l<j<m ^ 

P( max Y <_ t) and the authors who proposed them are: 
l<j<m ■* 

(i)  Chung and Erdos (1952), 

m m 
P( max Y. < t) £ 1 - {[ Z P(Y. > t)]2/[ E P(Y. > t) 

l<j<m :1 j=l  3        j-1  J 

(5.32) 

+  E P(Y > t, Y > t)]}; 
1*1   1      J 

(ii)  Dawson and Sankoff (1967), 

2 m 1 
p( max Y. £ t) £ 1 [ Z P(Y. > t) =?■ Z P(Y. > t, Y. > t) ] 

l<j<m J r 3=1  J       r-i i<j   1      3 

(5.33) 
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where r is the greatest integer less than or equal to 

m 
Z  P(Y. > t, Y. > t)/ Z  P(Y. > t); (5.34) 

i^j   1      2 3=1      1 

and (lii) Kounias (1968), 

P( max Y.   ±t)   <_1 - {   E P(Y.   >  t)   -    E P(Y.   >  t,  Y.   >  t)       (5.35) 
l<j<m -1 j6L     ■] l<j      :L ;, 

i,j6L 

where L is any subset of {1, 2, ..., m} with two or more elements. 

A lower bound, proposed by Hunter (1976), is 

m 
P( max Y.£t)^l-  EP(Y.>t)-   E  P(Y. > t, Y. > t) 

l^jlm J " J=l  3 (i,J)6T  X J     (5>36) 

where T is any connected set of m - 1 pairs (i,j) such that either 

(.,k) or (k,.) is in the set for each k = 1, ..., m. 

The primary difficulty in evaluating these bounds is that the 

subnetwork's paths must be explicitly enumerated in order to compute 

the P(Y. > t, Y. > t).  Should this computational difficulty be 

overcome, however, the bounds could be incorporated into the 

Subnetwork Analysis procedure as per the discussion in subsection 

5.3.3. 
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6,  CONCLUDING REMARKS 

This report had as its goal the improvement and implementa- 

tion of a new project scheduling procedure currently being developed 

at the Institute of Statistics, Texas A&M University.  The project 

scheduling procedure has been improved by significantly extending 

the very critical Subnetwork Analysis procedure.  In particular, a 

suitable sampling procedure and estimator for bounds on the subnet- 

work's duration distribution, F(t), has been developed and incorporated. 

In addition, a procedure for extrapolating upper and lower bounds on 

F(t) to obtain an estimate of F(t) has also been determined and 

implemented. 

A computer system implementing the project scheduling procedure 

(including the improvements in Subnetwork Analysis) has been prepared 

and is documented in Baker and Sielken (1978). 

In addition, some possible alternatives to the current Subnetwork 

Analysis procedure have been suggested.  These alternatives are 

interesting topics for future research. 

The authors wish to acknowledge their gratitude to the Office of Naval 

Research for the support of this research under contracts N00014-68-A-0140 

and N00014-76-C-0038.  Several present and past members of the Institute of 

Statistics at Texas A&M University have also contributed to the development 

of this new project scheduling procedure and its computer implementation: 

E. Arseven (Lederle Laboratories), P. P. Biemer, C. S. Dunn, N. E. Fisher 

(Compucon Inc.), L. J. Ringer, and R. K. Spoeri (Bureau of the Census). 

The authors also want to particularly acknowledge the considerable 

contributions of H. 0. Hartley to Statistical PERT. 
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